M18/4/BIOLO/HP2/ENG/TZ2/XX/M

Markscheme

May 2018

Biology

Higher level

Paper 2

14 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

- 3 -

Section B

Extended response questions – quality mark

- Extended response questions for HLP2 each carry a mark total of [16]. Of these marks, [15] are awarded for content and [1] for the quality of the answer.
- [1] for quality is awarded when:
 - the candidate's answers are clear enough to be understood without re-reading.
 - the candidate has answered the question succinctly with little or no repetition or irrelevant material.

١

C	Questi	ion	Answers	Notes	Total
1.	а	i	«130 – 85 » = 45 «mm ² » ✓	Allow answers in the range of 40 to 50 «mm ² »	1
1.	a	ii	 a. S1/S2 is longer in short day plants OR the stages in long day plants are more variable in length ✓ b. leaves of plants grown in long day reach S2 / S3 /S4 stages sooner OR S1/S2/S3 completed earlier in plants grown in long days ✓ c. leaves of plants grown in long day reach S1 later than plants grown in short days ✓ 	Accept vice versa.	2 max
1.	b		 a. rosette of plant grown in long day has fewer leaves √ b. rosette leaf number of plant grown in long day plateaus/stays constant while the number continues to increase for plants grown in short days √ 	Accept vice versa. OWTTE.	2 max
1.	C		 a. lower starch levels at end of night <u>in all stages</u> ✓ b. lower starch levels at end of night in both plants grown in short day and long days;; c. no evidence that starch is being used for respiration <i>OR</i> starch may have been exported/stored in other tissues/example tissue «rather than used in respiration» √ 		2 max

(continued...)

(Question 1 continued)

C	Questi	ion	Answers	Notes	Total
1.	d	i	higher in plants grown in short days in S1 and higher in plants grown in long days for all other stages/S2, S3 and S4 \checkmark	Candidates must mention all stages for the mark.	1
1.	d	ii	a. leaves in plants grown in long day receive longer period of light / more leaf surface area so more photosynthesis occurs resulting in more starch ✓	Accept vice versa.	2
			b. plants in short days using starch to produce more leaves/for growth/S2 a period of rapid increase in number of leaves √	Accept vice versa.	2
1.	е		a. «mRNA» transcripts differ in plants grown in long days and short days \checkmark	Accept an example of such a transcript from the bar chart	
			b. indicates different genes are being expressed \checkmark	Accept other valid reason.	
			c. plants adapt to different daylight regimes by altering gene expression \checkmark		
			 short day length causes struggle to get enough light to photosynthesize and more «mRNA» transcripts related to photosynthesis 		3 max
			OR		
			plants produce large leaves rapidly when grown in long days which may result in more transcripts for biotic stress \checkmark		
1.	f		a. long day plant √		
			b. flowering hormone metabolism gene over represented in long day exposure		
			c. fewer leaves produced «rapidly» by plant in long day as energy shifted to flower formation \checkmark	Accept other valid reasons from the data	2 max
			 d. plants grown in short days produce more leaves over longer period before beginning to flower/need to use light more efficiently to photosynthesize ✓ 	Allow ECF if student indicates short day plant.	

Q	uesti	on	Answers	Notes	Total
2.	а		 a. I. cytosine ✓ (NOT simply Nitrogenous base) b. II. sugar-phosphate/covalent/phosphodiester bond ✓ c. III. phosphate ✓ (NOT phosphorus) d. IV.deoxyribose ✓ (NOT pentose sugar) 	Award [1] for any two correct responses.	2 max
2.	b	i	 a. help to supercoil/pack DNA in chromosomes √ b. help to regulate transcription / gene expression √ 		1 max
2.	b	ii	 a. experiment is meant to determine whether DNA or protein is the genetic material ✓ b. viruses/bacteriophages grown in <u>radioactive</u> S/S³⁵ which enters the protein coat ✓ c. viruses/bacteriophages grown in <u>radioactive</u> P/P³² which enters the DNA ✓ d. «radioactive» viral DNA entered the bacterial cell during infection <i>OR</i> «radioactive» viral protein did not enter the bacterial cell during infection √ 		3 max
2.	b	iii	regulator of gene expression/introns/telomeres/genes for tRNA / rRNA / promoter / enhancer / silencer / site for primer to bind / codes for mRNA primer √		1
2.	С	i	binding/entry of tRNA carrying amino acids/aminoacyl tRNA / charged tRNA / site of transfer of growing polypeptide chains/peptide bond formation \checkmark	Marks can be awarded to an annotated diagram.	1
2.	С	ii	 a. ATP «hydrolysis» provides energy for amino acid attachment ✓ b. they attach a <u>specific</u> amino acid to the (3') end / free CCA of a tRNA ✓ c. they do this repeatedly / they attach amino acid to all of the tRNA molecules that have anticodon corresponding to that amino acid ✓ 		2 max

C	Questi	on	Answers	Notes	Total
3.	а	i	 a. anaphase <u>II</u> ✓ b. as four daughter cells are being formed <i>OR</i> the centromeres split / sister chromatids separate <i>OR</i> sister chromatids/ chromosomes are pulled «by the spindle microtubules» to opposite poles √ 		2
3.	а	ii	 a. two «or more» traits/genes are inherited independently of one another ✓ b. observed for traits/genes that are not linked/far apart on the chromosome ✓ c. «due to homologous» chromosomes aligning independently/randomly on equator during metaphase I/meiosis I ✓ d. during anaphase I homologues pulled to separate poles ✓ 	Accept vice versa. Can be shown in annotated diagram.	2 max
3.	b		 a. correct parental genotypes shown / Ff ii, Ffl^A l^B √ b. Punnett square with correct gametes shown √ c. correct probability: 1/8 OR 12.5% √ 	Must use blood type symbols I ^B I ^A and i. No specific letters required to represent cystic fibrosis allele though dominant and recessive must be apparent.	3

Q	uesti	on	Answers	Notes	Total
4.	а		a. secondary structure includes alpha helices/beta pleated sheets \checkmark		
			b. secondary structure «of this protein» consists «mainly» of alpha helices \checkmark		
			c. spiral coils «of polypeptide chain» held together by hydrogen bonds \checkmark		3 max
			 d. between oxygen «C=O» and hydrogen atoms «N−H» of amino acids «on backbone» ✓ 		
			e. «some» beta pleated sheets present in this protein \checkmark		
4.	b	i	salivary glands <i>AND</i> pancreas √	Both needed.	1
4.	b	ii	breaks down starch «by hydrolysis» into maltose/disaccharides \checkmark		1
4.	с		a. enzymes work by forming enzyme-substrate complexes \checkmark	Can show these points in an annotated diagram.	
			b. binding of substrate«s» to active site «of enzyme» \checkmark	annolaleu ulagrann.	
			c. «enzyme» changes shape slightly		
			OR		3 max
			puts strains on chemical bonds «of substrate» \checkmark		
			d. decreases activation energy / increases rate of reaction \checkmark		
			e. enzymes bind to specific substrates \checkmark		

Section B

Clarity of communication: [1]

The candidate's answers are clear enough to be understood without re-reading. The candidate has answered the question succinctly with little or no repetition or irrelevant material.

Qu	estion	Answers	Notes	Total
	a	 a. early evidence showed membranes are partially permeable <i>AND</i> organic solvents penetrate faster than water ✓ b. suggests they have non-polar regions ✓ c. chemical analysis showed membranes consist mainly of proteins and lipids ✓ d. layer of phospholipids spread over water, orientate themselves into monolayer with nonpolar/hydrophobic tails out of water and polar/hydrophilic heads in water surface ✓ e. when shaken with water form micelles/particles with tails inwards away from water ✓ f. Davson–Danielli model proposed phospholipid bilayer coated with protein molecules on both surfaces ✓ g. evidence from electron microscopy «supported Davson–Danielli model» ✓ h. three-layered structure/ sandwich/railway tracks/two dark bands with a light band between ✓ i. model could not account for hydrophobic proteins / artifacts due to low resolution ✓ j fluorescent labelling / freeze fracturing later used to investigate membrane structure ✓ k. led to Singer-Nicholson / fluid mosaic model of protein molecules floating in fluid lipid bilayer ✓ l. shows particles/proteins project partially and sometimes right through lipid bilayer ✓ m. indicates peripheral and integral proteins present ✓ 	Accept any of the points clearly explained in an annotated diagram.	8 max

(Question 5 continued)

Q	uestion	Answers	Notes	Total
5.	b	a. (simple diffusion) of nutrients along/down a concentration gradient \checkmark		
		b. example of simple diffusion eg fatty acids \checkmark		
		c. facilitated diffusion of nutrients involves movement through channel proteins \checkmark		
		d. example of nutrient diffusion eg fructose \checkmark		4 max
		e. active transport of nutrients against a concentration gradient / involving protein pumps \checkmark		
		f. example of active transport, eg (iron) ions/glucose/amino acids \checkmark		
		g. endocytosis / by means of vesicles \checkmark		
		h. example of nutrient for endocytosis, eg cholesterol in lipoprotein particles \checkmark		
5.	с	a. active transport/loading of sucrose/amino acids/organic metabolites \checkmark		
		b. sucrose moves by apoplastic / symplastic routes \checkmark		
		c. «loading» at source into companion cells of sieve tubes» \checkmark		3 max
		d. movement «of sucrose» through plasmodesmata \checkmark		
		e. high concentration of solutes in phloem leads to water movement by osmosis \checkmark		

(Plus up to **[1]** for quality)

M18/4/BIOLO/HP2/ENG/TZ2/XX/M

Question		Answers	Notes	Total
6.	a	 a. «cell» respiration is the «controlled» release of energy from organic compounds to produce ATP ✓ b. «cell respiration» involves the oxidation and reduction of electron carriers ✓ c. in link reaction pyruvate is converted into acetyl coenzyme A, CO₂ is released and NAD is reduced ✓ d. in the Krebs cycle, a 4 C molecule combines with acetyl CoA ✓ e. decarboxylation releases 2 CO₂ molecules for each pyruvate / conversion of 6C to 5C/5C to 4C releases CO2 ✓ f. «3» reduced NAD and «1» reduced FAD are produced ✓ g. ATP generated in the Krebs cycle ✓ h. reduced molecules/FAD/NAD are carried to the cristae/inner membrane of the mitochondria ✓ i. transfer of electrons between carriers in the electron transport chain in the membrane of the cristae is coupled to proton pumping ✓ j. protons accumulate in intermembrane space/ between cristae/inner membrane and outer membrane OR proton / electrochemical gradient between intermembrane space and matrix is established ✓ k. protons diffuse through ATP synthase to generate ATP ✓ l. chemiosmosis is the use of a proton/electrochemical gradient to generate ATP ✓ m. oxygen is the final electron acceptor ✓ 	Accept any of the points in a correctly annotated diagram.	8 max

(continued...)

(Question 6 continued)

Q	uestion	Answers	Notes	Total
6.	b	a. ventilation is exchange of gases between lungs and air \checkmark	Both needed.	
		b. during inhalation diaphragm contracts AND lowers \checkmark		
		c. external intercostal muscles contract, raising ribs upwards and outwards \checkmark		
		d. increase in volume AND decrease in pressure within thoracic cavity \checkmark		4 max
		e. air drawn into alveoli bringing fresh supply of oxygen \checkmark		
		f. oxygen concentration in alveolar sacs is higher than in blood capillaries \checkmark		
		g. «oxygen concentration gradient» causes oxygen to diffuse out of alveoli into red blood cells in capillaries √		
6.	С	a. pyramid of energy has stepped shape with largest bottom step being producers, then first consumer, second consumer, <i>etc</i> ✓		
		b. light energy «from sun» converted to chemical energy in carbon compounds by photosynthesis \checkmark		
		c. energy released by respiration is used in living organisms AND converted to heat \checkmark		3 max
		d. heat «energy» is lost from ecosystems \checkmark		
		e. approximately 10 % of energy in trophic level converted into new material for next level \checkmark		
		f. energy also lost as undigested material/uneaten material/feces/excretion \checkmark		

(Plus up to **[1]** for quality)

Question	Answers	Notes	Total
Question 7. a	Answers a. specific immune response/antibody production as a consequence of the presence of bacterial antigens ✓ b. macrophage / phagocyte ingests bacterial pathogen displaying bacterial antigens on surface ✓ c. attached to major histocompatibility/MHC molecules ✓ d. helper T cell activated by presentation of antigen on surface of macrophage ✓ e. activated helper T cell binds to B cell specific to the antigen ✓ f. stimulated B cell undergoes repeated mitotic/cell divisions ✓	Notes	Total
	 g. «cells enlarge and differentiate» to form clone of plasma cells √ h. plasma cells produce <u>specific</u> antibodies √ i. antibodies bind to bacteria making them easier to digest by white cells OR opsonization OR agglutination √ j. (some antibodies combined with antigen) activate a complement cascade to kill bacteria directly √ k. some antibodies act as antitoxins / neutralize toxins / change chemical structure of toxins √ l. once begun, antibody production lasts for several days until all antigens destroyed √ 	OWTTE.	8 max
	m. memory cells remain in blood giving extended immunity \checkmark		

(continued...)

(Question 7 continued)

C	uestion	Answers	Notes	Total
7.	b	Answersa. problem results from excessive use of antibiotics by doctors/veterinarians/in livestock OR low antibiotic doses taken by patients (not finishing treatment) \checkmark b. natural variation exists in any population of bacteria making some resistant to a specific antibiotic \checkmark c. variation arises from mutation OR antibiotic resistance can be transferred between bacteria by plasmids \checkmark d. antibiotic kills most bacteria except those that are resistant \checkmark e. resistant bacteria survive, reproduce and pass on resistance to offspring \checkmark f. soon population is made of mainly antibiotic resistant bacteria \checkmark	NOTES	4 max
		 g. this is an example of natural selection «increasing frequency of characteristics that make individuals better adapted to environment» √ 		
7.	C	 a. decomposition of dead organic material «by saprotrophic bacteria» √ b. «decomposition» leads to CO₂ formation/regeneration due to respiration √ c. «saprotrophic bacteria only» partially decompose dead organic matter in acidic/anaerobic conditions in waterlogged soil √ d. results in peat formation in bogs/swamps √ e. photosynthetic bacteria/cyanobacteria fix CO₂ in photosynthesis √ 		3 max

(Plus up to **[1]** for quality)